Name:	Teacher:
	· · · · · · · · · · · · · · · · · · ·

SYDNEY TECHNICAL HIGH SCHOOL

MATHEMATICS

March 2014

Time Allowed - 70 minutes

DIRECTION TO CANDIDATES:

- All questions may be attempted.
- All questions are not of equal value. The marks indicated are only a guide and may be changed.
- Full marks may not be awarded for careless or badly arranged work, including illegible writing.
- Approved calculators may be used.
- Diagrams are not drawn to scale.
- All necessary working should be shown in every question.
- Each question attempted is to be started ON A NEW PAGE,
 clearly marked with the number of the question and your name
 on the top right hand side of the page.

1.	Given that the curve $y = ax^2 - 8x - 8$ has a stationary point at $x = 2$, find the value of
	a

A.
$$a = \frac{1}{2}$$

B.
$$a = 2$$

C.
$$a = \epsilon$$

B.
$$a = 2$$
 C. $a = 6$ D. $a = -2$

A.
$$\frac{1}{6}$$

B.
$$\frac{1}{4}$$

B.
$$\frac{1}{4}$$
 C. $\frac{1}{3}$

D.
$$\frac{1}{2}$$

3. The equation of the directrix of the parabola
$$y^2 = -8x$$
 is

A.
$$x = 2$$

B.
$$y = 2$$

B.
$$y = 2$$
 C. $x = -2$ D. $y = -2$

D.
$$y = -2$$

4.
$$2x + 5$$
, $3x$ and m form a geometric sequence with a common ratio of 4. The value of m is

Consider a curve with the following properties:

$$g(x)$$
 is odd.
 $g(5) = 0$ and $g'(2) = 0$.
 $g'(x) > 0$ for $x > 2$.

Which of the following could be the graph of y = g(x)?

(A)

(B)

(C)

(D)

SECTION 2

Question 6 (12 Marks) Start a New page

(a). Find the value of
$$\sum_{k=0}^{5} (k^2 + 1)$$
 (1)

(b). If α and β are the roots of the equation

 $2x^2 - 6x - 3 = 0$, find the value of

(i)
$$2 \alpha \beta$$
 (1)

(ii)
$$(\alpha + \beta)^2$$
 (1)

(iii)
$$\frac{1}{\alpha} + \frac{1}{\beta}$$
 (1)

(iv)
$$\alpha^2 + \beta^2$$
 (1)

(c). For the parabola $4y = x^2 + 4x + 12$

(iii) Sketch the parabola showing the vertex, focus and directrix (2)

(d) The second term of a geometric series is
$$\frac{3}{8}$$
 and the seventh term is 12. Find the 14th term.

Question 7 (12 marks) Start a New page

- (a) The first 3 terms of an arithmetic series are 62, 56 and 50.
 - (i) Write down a formula for the nth term (1)
 - (ii) If the last term is -88, how many terms are there in the series? (2)
 - (iii) Find the sum of the series. (2)
- (b) Find the value of k in the equation $x^2 (k+3)x + (k+6) = 0 \text{ if it has no real roots.}$ (2)
- (c) Find the equation of the locus of a point P(x, y) which moves so that line PA is perpendicular to the line PB where A = (1,5) and B = (-2, -3) (3)
- (d) Solve the equation $3^{2x} + 2.3^x 15 = 0$ (2)

Question 8 (12 marks) Start a New page

- (a) Consider the curve given by $y = -x^3 + 6x^2 9x 1$
 - (i) Find the co-ordinates of any stationary points and determine their nature (3)
 - (ii) Prove a point of inflexion exists and find its co-ordinates (2)
 - (iii) Sketch the curve for $x \ge 0$, clearly indicating all significant points. (2)

Question 8 Continued

(b)

A cylinder of radius r cm and height h cm is inscribed in a cone with base radius $6\,\mathrm{cm}$ and height $20\,\mathrm{cm}$ as in the diagram.

(i) Show, using similar triangles, that
$$h = \frac{10(6-r)}{3}$$
 (1)

$$V = \frac{10\pi r^2 \left(6 - r\right)}{3}$$

(iii) Hence find the values of r and h for the cylinder which has maximum value (3)

Question 9 (14 marks) Start a New Page

(a) Find the primitives of

(i)
$$8x + 3x^2 - 4x^3$$
 (ii) $(2x - 1)^3$

(ii)
$$(2x-1)^3$$

- (b) Find the equation of the curve passing through the point (2,5) with gradient function $f'(x) = 3x^2 - 4x + 1$.
- (c) The diagram shows the derivative of y=f(x).
- (i) Write down the x co-ordinate of the turning point on y=f(x) and state whether it is a maximum or minimum turning point. (2)
- (ii) At what x value on y=f(x) is there a horizontal point of inflexion? (1)

- (d) On their son Geoffrey's 11th birthday, Mr and Mrs Shum deposited \$600 into an account earning 5% p.a. interest compounded annually. They will continue to deposit \$600 on each of his successive birthdays, up to and including his 21^{st} , giving him the accumulated funds as a present on his 21st birthday.
 - (i) Show that the amount of Geoffrey's 21st birthday present was \$8524 (to the nearest dollar)
 - (ii) What single deposit on Geoffrey's 11th birthday would have, under the same conditions, provided the same 21st birthday present? (2)

SECTION 2

$$)(a) = 1 + 2 + 5 + 10 + 17 + 26$$

$$= 61$$

(b)
$$\alpha \beta = \frac{c}{a} = \frac{3}{2}$$

$$\alpha + \beta = \frac{b}{a} = \frac{6}{2} = 3$$

(ii)
$$(\alpha + \beta)^2 = 3^2 = 9$$

$$\frac{1}{\alpha} \frac{1}{\beta} \frac{1}{\beta} = \frac{1}{\alpha} \frac{1}{\beta} = \frac{$$

(V)
$$\chi^{2} + \beta^{2} = (\alpha + \beta)^{2} - \lambda \neq \beta$$

 $= 3^{2} - 2 \times 3$
 $= /2$

(c)
$$4y-12+4=x^2+4x+4$$

 $4y-8=(x+2)^2$
 $4(y-2)=(x+2)^2$

(d)
$$t_2 = ar = \frac{3}{8} - 1$$

 $t_7 = ar^6 = 12 - 2$

(i)
$$T_n = 62 + (n-1)-6$$

= 62 -6n+6
 $T_n = 68-6n$

$$\begin{array}{rcl} \text{(III)} & S_{36} = \frac{26}{2} \left[2 \times 62 + 25 \times -6 \right]. \\ & = -338 \end{array}$$

(b)
$$\Delta = b^2 - 4ac$$

No real roots: $\Delta < 0$
 $(k+3)^3 - 4 \cdot 1 \cdot (k+6) < 0$
 $k^2 + 6k + 9 - 4k - 24 < 0$
 $k^2 + 2k - 15 < 0$
 $(k+5) (k-3) < 0$

(c)
$$m_{PA} = \frac{1}{m_{PB}}$$
 $m_{PB} = \frac{y+3}{x+2}$
 $m_{PA} = \frac{y-5}{x-1}$

$$\frac{y-5}{x-1} = \frac{1}{\frac{y-3}{x+2}}$$

$$\frac{y-5}{x-1} = -(\frac{x+2}{y+3})$$

$$(y-5)(y+3) = -(x+2)(x-1)$$

$$y^2 = -(x^2 + x - 2)$$

$$y^{2}-2y-15 = -x^{2}-x+2$$

 $x^{2}+y^{2}-2y+x-17=0$

(d)
$$3^{2x} + 2.3 - 15 = 0$$

Let $y = 3^{x}$
 $y^{2} + 2y - 15 = 0$
 $(y + 5)(y - 3) = 0$
 $y = -5$ $y = 3$
 $3^{2} = -5$ $3^{2} = 3$
No solu $x = 1$

(a)
$$y = -x^3 + 6x^2 - 9x - 1$$

(i)
$$y' = -3x^2 + 12x - 9$$

= $-3(x^2 - 4x + 3)$
= $-3(x - 3)(x - 1)$

for st pts let
$$y'=0$$

 $x=3$, 1
 $y=-1$ -5
 $(3,-1)$ $(1,-5)$

When
$$x=3$$
 $y''=-6 < 0$ Max (3:1)

When
$$n=1$$
 $y''=670$ Min $(1:-5)$

For pt of inflexion y'' = -6x + 12 = 0 -6x = -12x = 2

4 = 3.

(b)(1) V= πr2h

From slintlar
$$\Delta$$
's
$$\frac{h}{20} = \frac{6-r}{6}$$

$$4 = \frac{20(6-r)}{6}$$

$$4 = \frac{10(6-r)}{3}$$

$$V = \pi r^{2} \times \frac{(o(6-r))^{3}}{(6-r)^{3}}$$

$$V = \underbrace{(o\pi r^{2}(6-r))^{3}}_{3}$$

(ii)
$$\frac{dv}{dr} = \frac{10\pi}{3} \times \frac{d}{dr} (6r^2 - r^3)$$

= $\frac{10\pi}{3} \times 3r (4 - r)$
= $\frac{10\pi}{3} \times 3r (4 - r)$
= $10\pi r (4 - r)$

$$\frac{dv}{dr} = 0$$
 when $\frac{1}{x} = 0$ and $\frac{1}{x} = 4$

$$\frac{dv}{dr} = 40\pi r - 10\pi r^{2}$$

$$\frac{d^{2}v}{dr^{2}} = 40\pi - 20\pi r$$
when $r = 4$

$$\frac{d^{2}v}{dr^{2}} < 0$$

$$\therefore \text{ Max when } r = 4$$
and $h = 10(6-4)$

$$h = \frac{20}{3}$$

) 11th bday
$$A_1 = 600 \times 1.05^{10}$$
12th " $A_2 = 600 \times 1.05^{9}$

;

20th "
$$A_{10} = 600 \times 1.05$$
"
 $21st$ " $A_{11} = 600$

$$=600 \times \left(\frac{1.05^{4}-1}{0.05}\right)$$

$$x = $5233$$

(i)
$$\chi = -2$$

minimum

iii)
$$-2 < x < 3$$
 and $x > 3$

(c)(1)
$$\frac{8x^2 + 3x^3 - 4x^4}{3} + c$$

= $4x^2 + x^3 - x^4 + c$

(ii)
$$\frac{(2x-1)^{4}}{2.4} + C$$

$$= \frac{(2x-1)^{4}}{8} + C$$

(d)
$$f'(x) = 3x^2 - 4x + 1$$

 $f(x) = x^3 - 2x^2 + x + C$
A+ (2.5)
 $5 = 8 - 8 + 2 + C$

$$f(x) = x^3 - 2x^2 + x + 3$$